Adaptation of tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of resistant ecotypes.
نویسندگان
چکیده
Viral pathogens continue to emerge among humans, domesticated animals and cultivated crops. The existence of genetic variance for resistance in the host population is crucial to the spread of an emerging virus. Models predict that rapid spread decreases with the frequency and diversity of resistance alleles in the host population. However, empirical tests of this hypothesis are scarce. Arabiodpsis thaliana--tobacco etch potyvirus (TEV) provides an experimentally suitable pathosystem to explore the interplay between genetic variation in host's susceptibility and virus diversity. Systemic infection of A. thaliana with TEV is controlled by three dominant loci, with different ecotypes varying in susceptibility depending on the genetic constitution at these three loci. Here, we show that the TEV adaptation to a susceptible ecotype allowed the virus to successfully infect, replicate and induce symptoms in ecotypes that were fully resistant to the ancestral virus. The value of these results is twofold. First, we showed that the existence of partially susceptible individuals allows for the emerging virus to bypass resistance alleles that the virus has never encountered. Second, the concept of resistance genes may only be valid for a well-defined viral genotype but not for polymorphic viral populations.
منابع مشابه
Adaptation of Tobacco etch potyvirus to a susceptible ecotype of Arabidopsis thaliana capacitates it for systemic infection of other resistant ecotypes
متن کامل
Transcript Profiling of Different Arabidopsis thaliana Ecotypes in Response to Tobacco etch potyvirus Infection
The use of high-throughput transcript profiling techniques has opened the possibility of identifying, in a single experiment, multiple host mRNAs whose levels of accumulation are altered in response to virus infection. Several studies have used this approach to analyze the response of Arabidopsis thaliana to the infection by different RNA and DNA viruses. However, the possible differences in re...
متن کاملThe transcriptomics of an experimentally evolved plant-virus interaction
Models of plant-virus interaction assume that the ability of a virus to infect a host genotype depends on the matching between virulence and resistance genes. Recently, we evolved tobacco etch potyvirus (TEV) lineages on different ecotypes of Arabidopsis thaliana, and found that some ecotypes selected for specialist viruses whereas others selected for generalists. Here we sought to evaluate the...
متن کاملEvaluating the within-host fitness effects of mutations fixed during virus adaptation to different ecotypes of a new host.
The existence of genetic variation for resistance in host populations is assumed to be essential to the spread of an emerging virus. Models predict that the rate of spread slows down with the increasing frequency and higher diversity of resistance alleles in the host population. We have been using the experimental pathosystem Arabidopsis thaliana-tobacco etch potyvirus (TEV) to explore the inte...
متن کاملLoss-of-Susceptibility Mutants of Arabidopsis thaliana Reveal an Essential Role for eIF(iso)4E during Potyvirus Infection
The Arabidopsis thaliana-potyvirus system was developed to identify compatibility and incompatibility factors involved during infection and disease caused by positive-strand RNA viruses. Several Arabidopsis mutants with increased susceptibility to Tobacco etch potyvirus (TEV) were isolated previously, revealing a virus-specific resistance system in the phloem. In this study, Arabidopsis mutants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 365 1548 شماره
صفحات -
تاریخ انتشار 2010